
The shape of soap films and Plateau borders

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 246106

(http://iopscience.iop.org/0953-8984/19/24/246106)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 19:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/24
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 246106 (13pp) doi:10.1088/0953-8984/19/24/246106

The shape of soap films and Plateau borders*

M A Fortes1, P I C Teixeira2,3 and A M Deus1

1 Departamento de Engenharia de Materiais and Instituto de Ciência e Engenharia de Materiais e
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Abstract
We have calculated the shapes of flat liquid films, and of the transition region
to the associated Plateau borders (PBs), by integrating the Laplace equation
with a position-dependent surface tension γ (x), where 2x is the local film
thickness. We discuss films in either zero or non-zero gravity, using standard
γ (x) potentials for the interaction between the two bounding surfaces. We have
investigated the effects of the film flatness, liquid underpressure, and gravity
on the shape of films and their PBs. Films may exhibit ‘humps’ and/or ‘dips’
associated with inflection points and minima of the film thickness. Finally, we
propose an asymptotic analytical solution for the film width profile.

1. Introduction

Free liquid films (e.g. soap films) terminate at Plateau borders (PBs), where they contact a
confining wall (a solid wall or a liquid pool, see figures 1(a) and (b), respectively) or other
films (see figure 1(c)). In the bulk of a fairly dry liquid foam, three films meet at a PB,
which therefore has a triangular cross-section; the PBs themselves meet in fours at quadruple
junctions, or nodes. The identification of films, PBs and quadruple junctions is somewhat
arbitrary, particularly in a fairly wet foam, since there is no sharp transition from one to the
other, but is nevertheless very convenient for the description and analysis of foam phenomena.
In line with this identification, a (uniform) film tension γF is usually assigned to the film
(of uniform thickness, often taken to be zero), while the tension of the surfaces of PBs and
quadruple junctions is taken to be γL, the bulk liquid surface tension. It is often assumed that
γF = 2γL, implying that the PB surfaces join the film tangentially, as shown in figure 1(d).
In fact, the film tension γF depends on the film thickness, 2x , because the two film surfaces
interact: therefore γF changes from point to point in a film of non-uniform thickness, which
is necessarily the case in the film–PB transition region. In what follows we sometimes refer
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Figure 1. (a) Vertical planar film between two plates. (b) Vertical planar film between a top plate
and a pool of liquid at the bottom: x0 is the film width at the neck and θ is the slope of the film
surface. (c) Symmetrical triple film junction. (d) Idealized thin film with PBs: γF is the film
tension; γL = γF/2 is the bulk liquid tension. In all cases the film is unbounded in the y direction,
perpendicular to the plane of the page.

to the film including PBs as the ‘whole film’, and to the film excluding PBs (i.e., to what is
conventionally known as ‘film’) as the ‘conventional film’.

The purpose of this paper is to determine the shape of a free liquid film and associated
PBs, taking into account the thickness dependence of the interaction between the two surfaces
bounding the film and its PBs. This we do by assigning a surface tension γ (x), where 2x is the
film thickness, to each surface. The film tension γF(x) then equals 2γ (x). We investigate only
‘flat’ films, i.e., those with a mid-plane of mirror symmetry: they are uniform along the third
dimension; such films are connected to PBs, hence must have a neck of thickness 2x0. For such
films the equilibrium Laplace equation with a position-dependent γ (x) can be integrated by
standard numerical methods. Extension to, e.g., axially symmetric films, or films of arbitrary
constant curvature as in a foam at equilibrium, where the two surfaces bounding the film are not
mirror images, is a much more complicated undertaking. We start by discussing gravity-free
films between two plates (figure 1(a)), and then investigate the effect of gravity on vertical films
either between two plates, or between a plate and a pool (figure 1(b)).

Recently Starov [1] has performed a semi-quantitative analysis of the shapes of gravity-
free thin films on a solid substrate using an equation originally proposed by Derjaguin [2, 3]
(and often referred to as Derjaguin’s equation). In particular, Starov investigated the transition
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regions from films to cylindrically symmetric liquid drops and menisci on plates and capillaries,
for given liquid–solid contact angles. Various types of features were identified and their relative
stability assessed through free energy calculations. In the present paper we carry out a similar
study of free liquid films with a mid-plane of symmetry, on the basis of a different equation for
the film profile, which we numerically integrate. The film tension is assumed to be thickness
dependent and gravity is included. We also derive an asymptotic solution to this equation
around the film neck.

This paper is organized as follows: in section 2 we introduce a model for the interaction
γ (x) between film surfaces. Next, in section 3 we derive the Laplace equation for a planar
film endowed with this γ (x), which is non-dimensionalized and numerically integrated, for
films in zero and non-zero gravity, in section 4. In section 5 we discuss, on a semi-quantitative
level, the relationship between γ (x) and features of the film shape. Then in section 6 we
obtain an approximate (asymptotic) solution to the Laplace equation for the conventional film
and compare it with those found numerically in the preceding section. Finally, our results are
summarized in section 7. Technical details pertaining to the solution of the film shape equation
are collected in the appendix.

2. Interaction between film surfaces

The main contributions to the energy per unit area γF = 2γ (x) of a flat, aqueous soap film
of uniform thickness 2x stabilized by ionic surfactants include a van der Waals attraction,
a double-layer repulsion, and a short-range, Born-type repulsion (see [4, 5], and references
therein). There is evidence [6–8] that γ (x) may have more than one minimum, as in figure 2.
These considerations also apply to liquid films on solid substrates. A soap film whose thickness
is close to the first minimum (the smaller xM, typically of the order of 4 nm) is called a Newton
black film; if its thickness is instead close to the second minimum (the larger xM, typically of
the order of 50 nm), it is known as a common black film [5]. It has been suggested [6] that other
minima may exist which are associated with thicker films (figure 2(c)). There is no consensus
in the literature on the exact form of γ (x) except with regard to the van der Waals attraction,
which is AH/(48πx2) with AH the Hamaker constant (recall that x is half the film thickness).

Stable flat (uniform-thickness, zero-curvature) films can exist if their thickness 2x is such
that ∂γ /∂x < 0 and ∂2γ /∂x2 > 0 [3]. The pressure

π = −∂γ

∂x
= − ∂γF

∂(2x)
, (1)

is usually called the disjoining pressure, a term introduced by Derjaguin [9]. This quantity is
experimentally accessible (see, e.g., [5]); typical values are in the range 50 Pa–50 kPa [6]. In
our calculations we shall use the following form for γ (x) [4, 10]:

γ (x) = γL + b1

xn
− b2

x2
+ b3 exp(−b4x), (2)

where n and bi (i = 1, 2, 3, 4) are constants chosen such that γ (x) (and thus also π(x); see
section 3) has two minima. Here the b1 term models the steep Born repulsion, the b2 term is
the Van der Waals interaction, and the exponential term is a double-layer repulsion of strength
b3 and inverse screening length b4. As required, γ (x) approaches γL on increasing x (i.e. on
approaching a PB). Equation (2) is sufficiently general to describe films made from either ionic
or non-ionic surfactants, depending on b3/b2; effects such as micelle formation have been
neglected at this stage. Figures 2(a) and (b) plot γ (x) and π(x) for potential A in table 1: they
have the same shape and both tend to a constant value (γL or 0, respectively) at large x , and to
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Figure 2. (a) Interaction potential γ (X), equation (16), and (b) disjoining pressure π(X) =
−dγ (x)/dx , for potentials A (solid lines) and B (dashed lines) in table 1. The parameters are
chosen so that the potential has a realistic shape with a deep first minimum and a shallower second
minimum; see, e.g., [5]. (c) Schematic representation of a possible γ (x) (solid line) and π(x)

(dashed line) with more than two minima [6].

infinity as x → 0, going through two minima. Equation (2) can also describe the two outermost
minima of a potential with more than two minima.

3. Laplace equation for a film with a mid-plane of mirror symmetry and
thickness-dependent surface energy

We take the yz-plane to lie in the mid-plane of mirror symmetry of the film, with the vertical
z-axis directed upwards (see figure 1). The film is unbounded in the (horizontal) y-direction,
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Table 1. Parameters of the interaction potentials, equation (16) (see the text for details). The two
minima are at X1 = 1 and X2 and have depths �(X1) = 0.9 and �(X2), respectively.

Potential B1 B2 B3 B4 X2 �(X2)

A 0.053 4695 0.822 860 3.0 1.5 2.515 834 0.938 893
B 0.075 7825 1.291 430 5.0 1.5 2.689 082 0.909 958

but confined in the z-direction by two horizontal walls a distance h apart, say at z = 0 and
z = h (the bottom wall can be a liquid pool). The x-coordinate (x > 0) is the distance from
the yz-mid-plane to the film surfaces; the (whole) film profile (i.e. including the PB) is given
by x(z), and its width at the neck (where ẋ = dx/dz = 0) is 2x0.

The free energy E of the whole film (including PBs) per unit length along y comprises
the surface energy and the gravitational potential energy; taking, for the moment, z = 0 at the
bottom wall (where we define the gravitational potential energy to be zero), we have

E

2
=

∫ h

0
γ (x)(1 + ẋ2)1/2 dz + ρLg

∫ h

0
xz dz, (3)

where ρL is the liquid density, g is the acceleration of gravity, and the dot denotes differentiation
with respect to z. The volume of liquid per unit length in the y-direction (i.e. the area A
enclosed by the profile x(z)) is

A

2
=

∫ h

0
x dz. (4)

The equilibrium condition is that E be minimized at fixed A. Introducing a Lagrange multiplier
π0, this implies

δ

{∫ h

0
[γ (x)(1 + ẋ2)1/2 + ρLgxz + π0x] dz

}
≡ δ

[∫ h

0
F(x, ẋ, z)

]
= 0. (5)

The corresponding Euler–Lagrange equation is

d

dz

(
∂ F

∂ ẋ

)
− ∂ F

∂x
= 0, (6)

leading to the Laplace equation for a film with position-dependent γ :

d

dz

[
γ (x)

ẋ(
1 + ẋ2

)1/2

]
− (1 + ẋ2)1/2 dγ

dx
= π0 + ρLgz. (7)

This equation was derived previously by Fortes [11], who showed that its form does not
depend on the wettability of the confining solid surfaces: this only enters through the boundary
conditions. A similar equation has been recently proposed by Starov [1], who attributed it
to Derjaguin. Unlike Derjaguin’s, equation (7) includes both a thickness-dependent surface
tension γ (x) and gravity.

The radius of curvature r(x) of the film surface x(z) (r(x) > 0 if the centre of curvature
is outside the film and r(x) < 0 otherwise) is given by

1

r(x)
= ẍ

(1 + ẋ2)3/2
= d

dz

[
ẋ

(1 + ẋ2)1/2

]
, (8)

and the angle θ ∈ [−π/2, π/2] defining the film surface slope relative to the z-axis (see
figure 1(a)) is

cos θ = (1 + ẋ2)−1/2. (9)
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(Note that cos θ only takes positive values.) At the film neck, ẋ = 0 and θ = 0. Using
equations (8) and (9), equation (7) can be written in the form

γ (x)

r(x)
− cos θ

dγ

dx
= π0 + ρLgz. (10)

This equation can be interpreted in terms of an equilibrium of pressures: the pressure in the
surrounding gas exceeds the pressure inside the liquid at z by 	p = π0 + ρLgz, where π0 is
the excess pressure at z = 0. We shall henceforth refer to π0 as the liquid underpressure: it
is balanced by the capillary pressure γ (x)/r(x), which dominates at large x in the PB region;
and by a disjoining pressure − cos θ [dγ (x)/dx], which dominates at small x , in the nearly flat
thin-film region (the conventional film). For constant γ , equations (7) and (10) reduce to the
usual form of the Laplace equation for a vertical interface under gravity, which is invariant in
the y direction. In particular, note that for γ (x) ≈ γL, as in the PB region, the radius r is
approximately constant for g = 0 (r = γL/π0), i.e., the surface profile approaches a circle of
radius π0/γL. Indeed, at the ends of a conventional gravity-free film of negligible thickness,
the PB surfaces are usually taken to be circular.

Noting that

1

r(x)
= d(sin θ)

dz
= −d(cos θ)

dx
, (11)

and that
d(cos θ)

dx
= −ẍ cos3 θ, (12)

equation (10) can be rewritten in the form

ẍ = π0 + ρLgz − π(x) cos θ

γ (x) cos3 θ
, (13)

where cos θ is given by equation (9) and we have used the fact that d[γ (x)]/dx = −π(x).
Equation (13) is the key equation of this paper.

4. Numerical integration of the Laplace equation

It is convenient to introduce non-dimensional quantities. We take as the unit of length the film
half-thickness, x1, at the first minimum of the potential γ (x), and as the unit of surface energy
per unit area the liquid surface tension γL, whence

X = x

x1
, Z = z

x1
, �(x) = γ (x)

γL


0 = x1π0

γL
, c2 = γL

ρLg
, G =

( x1

c

)2 = ρLg

γL
x2

1 , (14)

c being the capillary length of the (bulk) liquid; note that G ∝ g, hence it is a measure of the
strength of gravity. In terms of the reduced quantities given by equations (14), equation (13)
becomes

Ẍ = 
0 + G Z − 
(X) cos θ

�(X) cos3 θ
, (15)

where 
(X) = d�(X)/dX . We used a dimensionless interaction potential of the form of
equation (2) with n = 12:

�(X) = 1 + B1

X12
− B2

X2
+ B3 exp(−B4 X), (16)

6
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where B1 = b1/γLx12
1 , B2 = b2/γLx2

1 , B3 = b3/γL and B4 = 1/x1 are determined by requiring
that �(X) have a minimum of depth �1 at X = 1, i.e., 
(X = 1) = 0 and �(X = 1) = �1,
and in some cases a second minimum at X > 1. In the remainder of this paper we restrict
ourselves to just a few sets of parameters, collected in table 1, that give �(X) and 
(X) of the
general shape seen in experiments [5]; see figure 2. These sets of parameters were selected to
illustrate different possible behaviours of the film profiles.

The procedure for integrating equation (15) is described in detail in the appendix. The
boundary conditions appropriate to two completely wettable plates (or a completely wettable
plate and a liquid pool) are that the angle θ , defining the slope of the film surface (see
figures 1(a) and (b), respectively), should reach π/2 (top branch of film) or −π/2 (lower
branch). Gravity-free films are calculated in the same manner: now G = 0 (no gravity) and
the two branches are identical. For symmetrical film triple junctions, θ should reach π/6 (see
figure 1(c)); we do not consider this case here.

Rather than X0 we found it convenient to use as a parameter in our calculations the surface
curvature Ẍ at the film neck (where by definition Ẋ = 0 and cos θ = 1), henceforth denoted
by κ and given by (see equation (15))

κ = 1

�(X0)
[
0 − 
(X0)]. (17)

For a given choice of interaction potential �(X), calculation of a film profile proceeds as
follows: we specify κ and 
0, and if necessary G (vertical films). If �(X) has more than
one minimum, we also need to specify near which minimum we want X0 to be. X0 is then
found by solving the non-linear algebraic equation (17). Once X0 is known, equation (15) can
be integrated by the method described in the appendix.

The effects of 
0 and κ on gravity-free films are illustrated in figure 3 for potential A in
table 1; here X0 is close to the second minimum. Varying 
0 at constant κ does not significantly
change the length or thickness of the conventional film but impacts dramatically on PB (hence
whole-film) size (as noted before, the radius of curvature of the PB is 1/
0 for G = 0). On the
other hand, for constant 
0, the smaller κ , the flatter the film. Further decreasing κ would lead
to longer films, but this is outside the reach of all numerical methods used (see the appendix).

We also looked at the experimentally relevant situation where the film geometry is changed
at constant liquid volume, e.g., by varying the distance H between the bounding plates. In order
to accomplish this, both 
0 and κ need to be varied in concert. Results are shown in figure 4:
on stretching a film its underpressure 
0 remains nearly constant (and therefore so does the PB
radius), but both its thickness X0 and its curvature at the neck κ decrease substantially.

Finally the effect of gravity was investigated: in figure 5, film and PB profiles are plotted,
for potential A in table 1, fixed 
0 and κ and varying G (or g). If G is small, the larger G the
more (top–bottom) asymmetric the film, as would be expected, and the more the PB surfaces
deviate from circles. We also found that there is a limiting G∗ above which there is no solution
with Ẍ > 0 everywhere (i.e., there are ‘dips’ in the profile). For G > G∗ quite complex film
shapes result: more and more dips appear, and the film can become either more or less top–
bottom asymmetric as G is increased, until eventually our numerical solution method becomes
unstable. It is hoped that these predictions might be verified, e.g., in microgravity experiments.

In all cases there is a fairly sharp transition between the conventional film and the PB,
marked by an abrupt change in the first derivative of the film profile: this lends support
to the simplified picture of a whole film as consisting of conventional film plus PBs (see
figure 1(d)). It does not, however, allow an unambiguous definition of the contact angle between
conventional film and PB, as the transition from one to the other is still continuous. We might
adopt the heuristic definition that this transition occurs at a maximum of Ẍ , corresponding to
the very large increase in Ẋ on leaving the central, nearly flat, region of the films. Alternatively,

7
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Figure 3. Film profiles in the absence of gravity (G = 0). (a) κ = 10−16 and varying 
0;
(b) 
0 = 0.001 and varying κ . All profiles terminate at θ = π/2 (completely wettable bounding
surfaces). The different thicknesses of the conventional films are not visible on this scale.

we could take it to be where the first (curvature) and the second (disjoining pressure) terms on
the left-hand side of equation (7) are of equal magnitude, as proposed by Starov [1]. Here we
do not pursue this important matter further, deferring it instead to future work.
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Figure 4. Films of constant volume, as might be obtained by varying the plate separation. A
doubling (or halving) of the film height increases (decreases) the liquid underpressure by only about
10%. As expected, X0 also changes slightly.

Figure 5. Effect of gravity on vertical film profiles, for 
0 = 0.001 and κ = 10−16 (for
clarity only one of the surfaces of the film is shown), calculated using potential A in table 1. As
the strength of gravity as measured by G increases, the films become asymmetric, their bottom
(left in plot) portions increasing in length at the expense of the top (right in plot) ones. For
G � G∗ = 3.33 × 10−13 (corresponding to g ∼ 0.4 m s−2), the lower portion of the film develops
a dip: if G is further increased, then the bottom portion of the film shrinks, until for G ∼ 1.1×10−3

a second dip appears. Above G ∼ 1.14 × 10−3, the film becomes very asymmetric, with a large
number of dips in its bottom portion, until for G � 1.19 × 10−3 the numerical solution becomes
unreliable.

9
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All the above results were obtained for X0 close to, and to the left of, the second minimum
of a �(X) with two minima (which is of course equivalent to having just one minimum).
Clearly the discussion also applies when �(X) has n minima and X0 is located close to, and to
the left of, the nth minimum. In the next section we discuss the case where X0 is located close
to, and to the left of, the first minimum of such a potential.

5. Film shape pathologies

The gravity-free films discussed up till now exhibit neither inflection points (where Ẍ(Z) = 0)
nor stationary points (where Ẋ(Z) = 0). Inspection of equation (15) with G = 0 and cos θ

related to Ẋ by equation (9) does not, however, rule out inflection points. At the neck (where
X = X0 and cos θ = 1), Ẍ > 0. As Z increases away from zero, the film thickness and
slope increase, hence 
(X) increases and cos θ decreases. The product 
(X) cos θ may then
either increase or decrease. If the former, then an inflection point may be reached; this must be
followed by a second inflection point at larger Z , so that the film turns upwards to match the
correct PB shape. An example of this feature, which we call a hump, is shown in figure 6(a): in
order to trigger it, d
/dX must be positive and large. Films with more than one hump are also
possible in principle, but we have not been able to produce any.

If, after the first inflection point, cos θ reaches unity, then X has a maximum. Because
the film must be matched to a PB, this maximum must be followed by a minimum, which we
call a dip. We searched for dips using the piecewise parabolic potential of figure 6(b), which
allows us easily to vary the steepness and curvature of its minimum and maximum. No dips
were found for gravity-free films; if, however, G 	= 0, equation (15) predicts that Ẍ = 0 for
a sufficiently large negative Z . As noted in the caption of figure 5 (results for potential A in
table 1), dips are only obtained for G greater than a threshold G∗. As G is increased above G∗,
the number of dips increases, but their shape remains essentially unaltered. Further analysis is
needed to establish the conditions under which humps and dips may occur and their possible
effect on film stability.

One might reasonably ask how the above features are modified by thermal fluctuations of
the film surfaces, hitherto neglected. To estimate the magnitude of this effect, we note that the
mean square amplitude of capillary waves on a liquid–vapour interface of tension γL is, in zero
gravity [12],

〈|h(R)|2〉 = kBT

2πγL
log

L

λ
, (18)

where kB is Boltzmann’s constant, T is the temperature, λ is the interfacial width and L is the
(macroscopic) system size; in non-zero gravity, L should be replaced by the capillary length c,
given by the fifth of equations (14). Taking T ∼ 300 K, γL = 20 mJ m−2, λ ∼ 1 nm, L ∼ 1 cm,
c ∼ 1 mm, equation (18) yields a typical normal interface displacement

√〈|h(R)|2〉 ∼ 0.7 nm.
This is about one-fifth of the thickness of a Newton black film, but only 2% of the thickness of
a common black film, so there is some hope that such dips as illustrated in figure 5 might be
observable in the latter system at room temperature.

6. Asymptotic solution for a thin-film profile

In this section we obtain an approximate solution to equation (15) for the conventional film.
We start by approximating �(X) by a truncated power expansion around X = X0:

�(X) ≈ �(X0) +
(

d�

dX

)
X0

(X − X0) + 1

2

(
d2�

dX2

)
X0

(X − X0)
2. (19)

10
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Figure 6. (a) Example of a hump obtained using potential B in table 1, for 
0 = 0.005 and
κ = 10−16; the horizontal and vertical scales are different for clarity. (b) Piecewise parabolic
potential used in the search for humps and dips: it has a minimum at X = X1 = 1 and a maximum
at X = X2 ≈ 1.2.

On further taking �(X) cos3 θ ≈ �(X0) (θ ≈ 0, i.e., Ẋ ≈ 0), equation (15) simplifies to

Ẍ = 1

�(X0)

[

0 + G Z +

(
d�

dX

)
X0

+
(

d2�

dX2

)
X0

(X − X0)

]
. (20)

The solution of this equation satisfying the boundary conditions X = X0 and Ẋ = 0 at Z = 0
is

X − X0 = κξ 2

(
cosh

Z

ξ
− 1

)
+ Gξ 3

�(X0)

(
sinh

Z

ξ
− Z

ξ

)
, (21)

11
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Figure 7. Comparison of numerical and analytical solutions for potential A in table 1, and

0 = 0.001, κ = 10−16, with and without gravity. Only one half of each film is shown; they
are mirror symmetric about the horizontal axis.

where κ is given by equation (17) and we have defined

ξ =
⎡
⎢⎣ �(X0)(

d2�
dX 2

)
X0

⎤
⎥⎦

1/2

. (22)

In figure 7 we compare the asymptotic and numerical solutions, both with and without
gravity: for G > G∗, Ẍ < 0 at the film neck and the asymptotic solution no longer
yields realistic film shapes. The asymptotic and numerical profiles differ by less than 0.5%
at |Z | = 100.

7. Summary

We have derived and solved Laplace’s equation for planar soap films between two confining
boundaries. We assumed that the film bounding surfaces, including their PBs, interact with
a force that is perpendicular to the mid-plane of the film and depends only on film (or PB)
thickness 2x (i.e. on the separation between bounding surfaces measured perpendicular to the
mid-plane of the film). This is equivalent to a film tension γ (x) that is a function of film
thickness only, and independent of surface slope or curvature. The output is the surface profile
x(z) of a film with a mid-plane of mirror symmetry. We used realistic potentials (with two
minima) for γ (x) and investigated the effect of varying the film underpressure π0, the film
curvature at the neck κ , and the acceleration due to gravity g, on x(z). Films with neck widths
close to either of the two potential minima can then be obtained. The effect of decreasing
κ is to stretch the conventional film at fairly constant PB size, whereas increasing π0 leaves
the conventional film basically unchanged and shrinks the PBs. In zero gravity, films whose
minimum thickness is below the first minimum of the film tension γ (x) may exhibit humps
(two inflection points), but we have not found any dips. By contrast, under gravity we could
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produce dips (i.e. thickness minima) but not humps. This of course does not mean that dips or
humps are necessarily absent from either type of film, for different parameter ranges than we
have explored.
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Appendix. Integration of the film profile equation

Equation (15) is equivalent to the following three equations in parametric form (where S = s/σ
is the reduced film arc length):

dX

dS
= sin θ, (A.1)

dZ

dS
= cos θ, (A.2)

dθ

dS
= 1

�(X)

(

0 + G Z + cos θ

d�

dX

)
, (A.3)

where θ ∈ [−π/2, π/2] defines the film surface slope relative to the z-axis (see figure 1(a)).
For given �(X), 
0 and G, integration starts at the neck (S = 0) with Z = 0, θ = 0 and a
given X0 satisfying the inequality

κ = 
0 − 
(X0)

�(X0)
> 0, (A.4)

and ends at the point where θ = π/2 (for a film wetting a plate or terminating at a liquid pool;
see figures 1(a) or (b)) or θ = π/6 (for three identical films meeting, see figure 2(a)).

In equation (A.4), κ is the film curvature at the film neck: flat films are obtained for κ � 1.
In zero gravity, G = 0 and the film is symmetrical (X (Z) = X (−Z)). In non-zero gravity,
G 	= 0 and the upper (Z > 0) and lower (Z < 0) film halves correspond to positive and
negative values of the arc length S, respectively. Numerical solution of equations (A.1)–(A.3)
was performed using variable-step-size Runge–Kutta or Bulirsch–Stoer methods [13].
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